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ABSTRACT

The problem of monitoring atmospheric radionuclides over time is investigated. Such monitoring is desirable for
both natural and anthropogenic radionuclides. The statistical problem is one of testing for a time series outlier, and
the problem is complicated by the fact that often several observations may be missing. In fact it may be the case that
several missing observations may occur immediately prior to a data value that is to be tested as an outlier. Evans
(1996) proposes an exponentially weighted moving average (EWMA) approach for detecting these outliers. The
EWMA approach is one that is quite popular in practice, but it is restricted to some extent by the fact that it is based
on the assumption that the autoregressive integrated moving average model, ARIMA(0,1,1), is a good fit to the data.
Evans presents simulation results based on simulated radionuclide data obtained from a model that he fit to Kuwait
Be7 data consisting of a sinusoidal component with long period plus an autoregressive component. One problem
with Evans’ approach is that false alarm rates tend to be high when the data value to be tested as an outlier is
preceded by a string of missing observations. In this paper we describe several alternative approaches for outlier
detection, and we compare these with the Evans method using a simulation study. In this study, outlier detection
capabilities are compared in the case in which no data are missing immediately prior to the data value to be tested as
an outlier as well as in the more difficult case in which several data values are missing immediately prior to this
value. Our results indicate that an autoregressive-based procedure suggested here has much better control over the
false alarm rates than does the Evans procedure, and it has detection capability that is comparable to and sometimes
better than that obtained by the Evans approach.

OBJECTIVE

The objective of this research is to investigate the problem of testing for outliers in radionuclide data. Such testing
is used for detecting leakage from underground nuclear explosions, and it is also useful for equipment monitoring
using natural radionuclides. In particular we develop techniques for testing for outliers in data structures typical of
those encountered when monitoring natural radionuclide concentrations. Specifically, we assume that such data are
collected at equal time increments but will sometimes involve missing observations. We compare our results with
those obtained using the method of Evans (1996).

RESEARCH ACCOMPLISHED
Introduction

We have investigated outlier detection in time series data with the specific application being that of monitoring
natural atmospheric radionuclide concentrations. Since these radionuclide concentrations are monitored regularly
over time, the problem is that of detecting an outlier in a time series. Consequently, any technique for outlier
detection must account for the correlation structure in the data. The radionuclide data sets often have several
missing observations, sometimes resulting in contiguous strings of missing observations. Our goal is to develop
outlier detection procedures capable of providing acceptable results in the presence of these missing observations. It
will also be desirable that those involved in the actual monitoring will not be required to perform the sometimes
difficult task of time series modeling as part of the monitoring procedure. In the following we discuss strategies for
outlier detection and we compare results using our methods with those obtained using the EWMA technique of
Evans (1996) via a simulation study.



Detecting Jumps

Obviously, an outlier should be detected at time & whenever the radionuclide observation at time & is "unusually
large". Outlier detection techniques differ on the basis of how they define "unusually large". Letting y, denote the
radionuclide concentration detected at time 4, then an outlier should be detected whenever the jump, y, —y,_;, is

sufficiently large. If sufficient historical data are available, then a simple outlier detection procedure could be based
on the empirical distribution of these "jumps". That is, we can empirically determine the values these jumps
typically assume when no outlier is present in historical data. Then for a given level of significance, the 1000%
upper critical value of these historical jumps can be estimated and compared with an observed “jump.”

A problem occurs whenever it is desired to test whether y, is an outlier when one or more values directly prior to

time k are missing. In this case we can again obtain an appropriate empirical distribution based on historical data.
For example, if an observation is to be tested as an outlier and the two preceding values are missing, then the
relevant question concerns what type of "jump" typically occurs between the observation at time £ —3 (i.e. the most
recently observed data value in this case) and the observation at time k. Again, based on historical data we can
obtain the 1000:% upper critical value on the 3-step ahead differences. Obviously, the above procedure can be used
in general for k step-ahead differences. In this report, the outlier detection technique based on these historical jump
distributions will be called the "jump test".

AR-Based Prediction Method

Another common method of measuring whether an observation, y, , is unusual is to compare it with the value of the

time series at time £ that is predicted to occur based on the other data. See Fox (1972) and Ljung (1989, 1993). If
the observed value is sufficiently higher than the predicted value, then it is considered to be an outlier. In our
implementation, predictions will be based on an autoregressive fit to the data. More generally, a time series is said
to be an autoregressive moving average process of orders p and ¢ , denoted ARMA(p, g), if

Yt = P11 +"'+§Dpyt—p +a; _elat—l —---—Qqat_q
where @, is a zero-mean white noise process with constant variance ¢ 5 . Suppose that m successive observations
Y(T,m) = (J’T+la---aJ’T+m—1), are missing from a time series ¥ = ()], 17,..., Vy ). Consider the vector

Yo = (yl,...,yT_l,O,...,O,yT+m ,.»¥pn)  that consists of all the actual observations and with zeros placed in the

missing positions. The expression

Y=Yo+XY(T,m)> ©)
where X is an n X m matrix of 1s and Os, leads to a formula for estimating the missing values, i.e.,

Yy, =—(XZ X)) XEY, @)

where X is the covariance matrix associated with (yl s Vs Vi )’. Formula (2) also holds in the situation where
the missing observations are not successive, say missing at Vis Voo Ve - At time k, the difference between
observed value ), and its interpolated value )A/k , which is obtained from (2), can be measured by
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which has an F(1,n—1) distribution if y, is not an outlier, where E;,l is the kth diagonal element of > , and o’

is the estimate of the variance of the noise O in a time series model. Note that Ljung and Box (1979) give a

formula for calculating >~ based on known parameters in an ARMA(p,q) model. In our implementation we follow

the suggestion of Ljung (1993), and use the estimates of the auotoregressive parameters to obtain the estimate of X.

In any autoregressive analysis, model selection is often a key component. In the simulation results shown here, we
use an AR(5) to fit the observed series. This allows for flexibility in the autoregressive model chosen and seems to
work well.  However, further research is needed on the impact of more careful model selection.

Model-Free Prediction Method

In order to avoid any distributional assumptions, we have considered a modification of Ljung’s method that is
applicable when a "large" number (N) of historical observations are available of which a% are randomly missing.
The (current) data set on which an outlier is to be tested is of length n, and we assume that the observation to be
tested as an outlier is preceded by m missing observations.

The method has three steps:

Step 1. Use an iterative algorithm to estimate the missing observations. At each step of the iteration, the missing

observations are estimated using the formula in (2). Note also that at each step we estimate X directly from the
definition and not based on a fitted model.

Step 2. Suppose we want to predict ¥, and that some values proceeding ), are missing. Using (2) we obtain ),

and find the difference | y, — ), |. Using the historical data, we obtain an empirical distribution for | y, — ), |
based upon the missing data structure present in the current realization.

Step 3. If the observed difference | y P y s | is larger than the upper ath percentile of the empirical distribution

obtained in Step 2, then ), is found to be an outlier.

Evans’ Method

Evans (1996) considered the problem of testing for outliers in the setting considered in this paper. He proposed a
technique that is similar to the prediction-based methods presented here, but in this case the prediction is based on
an exponentially-weighted moving average (EWMA) model. EWMA prediction is based on an ARIMA(0,1,1) fit to

the data. A time series is said to follow an ARIMA(0,1,1) model if y, =y, , +a, —Glat_l . Evans’ method is

based on the computation of two prediction-interval filters that measure the average (location or level) and the
variability of a process at time . The extent to which the EWMA procedure provides satisfactory predictions
depends to some extent on how well an ARIMA(0,1,1) model represents a reasonable fit to the data. However, this
model is fairly restrictive and does not well represent many types of time series behavior. Evans reported some
simulation evidence concerning the performance of his proposed outlier detector.

Simulation Procedure
We have used a simulation study to compare these four outlier detection methods.  Simulations are made to

compare the three methods for different time series models and different missing data structures. The details are as
follows:

(a) We generate N observations { y ot =12, N }. In the simulations reported here, we used N = 200. In
this study we consider several different models for the data:



6] AR(1) with @, =.6
(II) AR(1) with ¢, =.6 plus a sinusoid, f,, of period six months where

f, =1 lsin(lzg—n(t) +U) and U is a random uniform between —27 and 27.

Note: this is Evans’ simulation model based on Kuwait Be7 data.
(iii) AR(1) with @, =.9
(iv) AR(1) with @, =.9 + sin term as in (ii)
(v) ARQ2)with @, =1.41and @, =-.5.
(vi) AR@) with @, =1.4L, ¢, =—1,¢, =.705, and @, =—25.

In all cases, we use O j =81. In Figure 1 we show typical realizations of length 200 from each of these
models.

(b) The last observation, i.e. the 200" generated observation, is tested as a potential outlier.  In our
simulations, we consider the case in which the number of missing values immediately preceding the outlier
to be tested is m = 0, 1, 3, 6, or 12. In the AR prediction approach the historical values are taken to be all
observed data up to but not including the outlier. That is, the number of historical data values is N —m — 1.
These historical observations are used for model identification and estimation of model parameters. In the
case of the model-free and jump procedures, the historical data are taken to be the first N — m — 11 data
values. In these cases, the historical data are used for obtaining empirical distributions of distributions of
interest. In the simulations reported here, the historical data contain no missing values. However, our
simulation code allows for missing data in the historical series. Results shown here are similar to those
obtained when the historical data contained a moderate amount of missing data, i.e. 10% - 20% missing. If
missing data do occur in the historical series, these missing values are “filled in” using the procedure
outlined in Step 1 of the discussion of the model-free prediction method. Analysis then proceeds as in the
no missing data case.

(c) Critical values for the model-free prediction method and for the jump method are obtained for the
significance  level of interest. In these simulations we used o = 0.05.

(d) We test an augmented version, xégé, of the last data value as an outlier. Specifically, we consider

xégé =X,y +hO, where O denotes the estimated standard deviation of the data and where

h=0,1,2,3,and 4.

Simulation Results

In Tables 1-6 we give simulation results. In each case, 1000 realizations of length N = 200 are generated and the

tabled value is the proportion of times out of the 1000 replications that xégé is detected as an outlier. It should be

noted that for 2 > 0 this provides information concerning the detection capability of the test, and when 4 = 0 the
proportion tabled provides for a check on the false alarm rate of the testing procedure. In the tables it can be seen
that the AR-based prediction methods tend to outperform the EWMA approach recommended by Evans (1996). One
serious problem with the Evans method is the fact that the false alarm rate rises above the .05 level whenever several
values are missing prior to a potential outlier. Even with the higher false alarm rate, the Evans method tended to
have lower power than the AR-based method for values of 4 greater than zero. It should be noted that the model-
free method has performance similar to that of the AR-based method, although our more extensive simulation
experience has shown that modeling of the data is probably preferable. It should be noted that the jump method
maintains the desired false alarm rates but has a tendency to have lower detection probability than the more
sophisticated methods.



Conclusions

Results shown here indicate that the AR-based prediction method is superior to the Evans approach for outlier
detection in the setting considered here, particularly when missing data values occur immediately prior to the data
value to be tested as an outlier. Specifically, methods discussed here are appropriate for monitoring radionuclide
data which is collected at regular time intervals and for which an actual reading is obtained at most of the collection

times. In the case of anthropogenic radionuclides where it is not uncommon for the atmospheric concentrations to
be below a minimum detectable level the majority of the time, other outlier detection techniques must be developed.
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Table 1: Outlier Detection Results using the Six Models Listed in Simulation Section

() (ii)

h  Evans AR M-F  Jump h  Evans AR M-F  Jump
0.0 0.044 0.068 0.070 0.048 0.0 0.045 0.062 0.068 0.061
No 1.0 0.158 0.217 0.237 0.184 1.0 0.243 0.306 0.313 0.260
missing 2.0 0.536 0.679 0.690 0.600 2.0 0.691 0.832 0.837 0.759
value 3.0 0.860 0.954 0.954 0.903 3.0 0945 0989 0.991 0.978
4.0 0978 0.999 0.999 0.990 4.0 099 1.000 1.000 0.998
0.0 0.046 0.054 0.062 0.046 0.0 0.040 0.055 0.064 0.061
One 1.0 0.173 0.196 0.211 0.152 1.0 0.250 0.259 0.264 0.192
missing 2.0 0.537 0.570 0.586 0.419 2.0 0.706 0.685 0.702 0.563
value 3.0 0.837 0.886 0.889 0.745 3.0 0956 0954 0.953 0.886
4.0 0972 0.992 0.990 0.932 4.0 0997 0.997 0.997 0.990
0.0 0.092 0.076 0.085 0.060 0.0 0.100 0.054 0.068 0.042
Three 1.0 0.197 0.176 0.198 0.110 1.0 0.267 0.197 0.218 0.153
missing 2.0 0.505 0.516 0.536 0.328 2.0 0.650 0.584 0.623 0.417
values 3.0 0.803 0.832 0.839 0.603 3.0 0923 0907 0917 0.761
4.0 0945 0.963 0969 0.844 4.0 0993 0.995 0.995 0.955
0.0 0.112 0.052 0.061 0.050 0.0 0.112 0.038 0.057 0.049
Six 1.0 0.240 0.186 0.196 0.115 1.0 0.264 0.157 0.177 0.135
missing 2.0 0.528 0.519 0.531 0.315 2.0 0.655 0.548 0.583 0.406
values 3.0 0.812 0.854 0.851 0.559 3.0 0918 0.890 0.910 0.745
4.0 0949 0.978 0.978 0.800 4.0 0990 0.993 0.994 0.929
0.0 0.125 0.057 0.076 0.053 0.0 0.130 0.047 0.069 0.050
Twelve 1.0 0.246 0.169 0.195 0.124 1.0 0.299 0.152 0.204 0.153
missing 2.0 0.525 0.484 0.514 0.298 2.0 0.638 0.520 0.574 0.386
values 3.0 0.805 0.831 0.845 0.560 3.0 0903 0.853 0.888 0.699

4.0 0.950 0976 0.978 0.802 4.0 0979 00981 0.988 0.904



Table 1 Continued

No
missing
value

One
missing

value

Three
missing
values

Six
missing

values

Twelve
missing

values

h

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

Evans

0.042
0.330
0.808
0.969
0.997

0.043
0.347
0.835
0.972
0.998

0.146
0.362
0.752
0.938
0.992

0.222
0.399
0.732
0.932
0.984

0.294
0.428
0.715
0.908
0.975

(iif)
AR
0.069
0.545
0.979
1.000
1.000

0.056
0.399
0.889
0.995
1.000

0.089
0.267
0.698
0.933
0.996

0.074
0.211
0.611
0.893
0.981

0.084
0.218
0.534
0.844
0.969

M-F
0.081
0.552
0.979
1.000
1.000

0.066
0.422
0.890
0.990
1.000

0.101
0.281
0.707
0.938
0.996

0.089
0.234
0.609
0.887
0.979

0.114
0.240
0.549
0.847
0.975

Jump

0.061
0.523
0.974
1.000
1.000

0.049
0.338
0.851
0.989
1.000

0.076
0.214
0.594
0.882
0.982

0.055
0.154
0.466
0.781
0.951

0.072
0.140
0.348
0.643
0.865

h

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

Evans

0.048
0.378
0.865
0.982
0.998

0.049
0.386
0.846
0.982
1.000

0.138
0.382
0.783
0.959
0.999

0.223
0.424
0.752
0.937
0.992

0.314
0.445
0.716
0911
0.979

(iv)
AR
0.052
0.648
0.987
1.000
1.000

0.057
0.419
0.887
0.997
1.000

0.054
0.264
0.720
0.958
0.994

0.077
0.250
0.619
0.910
0.982

0.085
0.218
0.527
0.849
0.967

M-F
0.069
0.641
0.984
1.000
1.000

0.076
0.436
0.892
0.995
1.000

0.074
0.292
0.734
0.958
0.993

0.085
0.252
0.626
0.904
0.981

0.107
0.234
0.539
0.857
0.968

Jump

0.045
0.599
0.985
1.000
1.000

0.055
0.361
0.867
0.993
1.000

0.051
0.222
0.655
0.917
0.988

0.060
0.187
0.501
0.801
0.947

0.068
0.159
0.380
0.673
0.868



Table 1 Continued

No
missing

value

One
missing
value

Three
missing

values

Six
missing
values

Twelve
missing

values

h

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

Evans

0.035
0.356
0.784
0.958
0.995

0.035
0.354
0.785
0.957
0.995

0.175
0.388
0.721
0.930
0.988

0.267
0.428
0.695
0.891
0.971

0.287
0.428
0.682
0.875
0.958

™)
AR

0.066
0.875
0.999
1.000
1.000

0.070
0.471
0.949
0.997
1.000

0.065
0.239
0.694
0.950
0.999

0.060
0.202
0.551
0.867
0.979

0.064
0.180
0.511
0.833
0.973

M-F
0.072
0.878
0.999
1.000
1.000

0.080
0.487
0.954
0.997
1.000

0.077
0.253
0.694
0.953
0.998

0.076
0.208
0.568
0.867
0.980

0.088
0.212
0.541
0.847
0.979

Jump

0.051
0.761
0.997
1.000
1.000

0.052
0.379
0.895
0.992
1.000

0.053
0.195
0.537
0.863
0.982

0.071
0.159
0.388
0.685
0.890

0.062
0.129
0.298
0.566
0.799

h

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

Evans

0.048
0.280
0.722
0.948
0.994

0.048
0.279
0.721
0.949
0.994

0.142
0.335
0.668
0.910
0.991

0.237
0.371
0.654
0.868
0.973

0.249
0.384
0.651
0.856
0.958

(vi)
AR
0.068
0.659
0.989
1.000
1.000

0.070
0.306
0.779
0.975
0.998

0.065
0.211
0.611
0.917
0.991

0.069
0.199
0.535
0.848
0.977

0.072
0.178
0.509
0.833
0.971

M-F
0.069
0.665
0.989
1.000
1.000

0.078
0.312
0.788
0.976
0.997

0.078
0.218
0.627
0.925
0.992

0.083
0.211
0.553
0.855
0.975

0.095
0.207
0.544
0.846
0.975

Jump

0.051
0.469
0.957
1.000
1.000

0.055
0.241
0.659
0.946
0.995

0.052
0.158
0.477
0.821
0.969

0.075
0.145
0.384
0.665
0.874

0.060
0.114
0.308
0.561
0.789
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Figure 1. Typical Time Series Realizations for Simulation Models
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